摘要

DEADSouth mRNA is a component of germ plasm in Xenopus laevis and encodes a DDX25 DEAD-box RNA helicase. To determine the intracellular localization of DEADSouth protein, we injected mRNA encoding DEADSouth tagged with mCherry fluorescent protein into fertilized eggs from transgenic Xenopus expressing EGFP fused with a mitochondrial targeting signal. The DEADSouth-mCherry fusion protein was localized to the germ plasm, a mitochondria-rich region in primordial germ cells (PGCs). DEADSouth overexpression resulted in a reduction of PGC numbers after stage 20. Conversely, DEADSouth knockdown using an antisense locked nucleic acid gapmer inhibited movement of the germ plasm from the cortex to the perinuclear region, resulting in inhibition of PGC division at stage 12 and a decrease in PGC numbers at later stages. The knockdown phenotype was rescued by intact DEADSouth mRNA, but not mutant mRNA encoding inactive DEADSouth helicase. Surprisingly, it was also rescued by mouse vasa homolog and Xenopus vasa-like gene 1 mRNAs that encode DDX4 RNA helicases. The rescue was dependent on the 3%26apos;untranslated region (3%26apos;UTR) of DEADSouth mRNA, which was used for PGC-specific expression. The 3%26apos;UTR contributed to localization of the injected mRNA to the germ plasm, resulting in effective localization of DEADSouth protein. These results demonstrate that localization of DEADSouth helicase to the germ plasm is required for proper PGC development in Xenopus laevis.

  • 出版日期2013-2-15