摘要

How plants tailor their defense responses to attack from different insects remains largely unknown. Here, we studied the role of a mitogen-activated protein kinase (MAPK), MPK4, in the resistance of a wild tobacco Nicotiana attenuata to two herbivores, the specialist Manduca sexta and the generalist Spodoptera littoralis. Stably transformed N. attenuata plants silenced in MPK4 (irMPK4) were generated and characterized for traits important for defense against herbivores. Only the oral secretions (OS) from M. sexta, but not the OS from S. littoralis or mechanical wounding, induced elevated levels of jasmonic acid (JA) in irMPK4 plants relative to the wildtype plants. Moreover, silencing of MPK4 strongly increased the resistance of N. attenuata to M. sexta in a fashion that was independent of COI1 (CORONATINE INSENSITIVE1)-mediated JA signaling. Untargeted metabolomic screening identified several new MPK4-dependent putative defensive compounds against M. sexta. By contrast, silencing of MPK4 did not affect the growth of the generalist insect S. littoralis, and we propose that this was because of the very low levels of fatty acid-amino acid conjugates (FACs) in S. littoralis OS. Thus, MPK4 is likely to be a key signaling element that enables plants to tailor defense responses to different attackers.

全文