摘要

Relativistic and sub-relativistic solar energetic particles could cause an excess of ionization in the atmosphere, specifically in polar and sub-polar regions. This effect is observed mainly in upper troposphere and lower and middle stratosphere. The ionization effect could be strong at short time scales during major ground level enhancements (GLE)s. However, for the aims of recent atmospheric physics and atmospheric chemistry studies, namely the influence on the minor constituents and aerosols, it is important to derive the medium time scale ionization effect at various altitudes above the sea level.
The ground level enhancement GLE 70 on December of 13, 2006 is the third strongest event of the previous solar cycle 23. The ionization effect in the Earth atmosphere is obtained for various latitudes on the basis of a full Monte Carlo simulation of cosmic ray induced atmospheric cascade at several altitudes, namely 35 km, 25 km, 15 km and 8 km above the sea level. Here we adopt previously reported ion production rate profiles obtained with Monte Carlo simulation of atmospheric cascade performed with the CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron generators. A realistic winter atmospheric model is assumed. The 24-h ionization effect is computed for the sub-polar and polar regions, where it is expected to be the maximal effect of the planetary distribution on the Earth.

  • 出版日期2015