摘要

The effect of using two representations of the normal-to-surface magnetic field to calculate photospheric measures that are related to the active region (AR) potential for flaring is presented. Several AR properties were computed using line-of-sight (B-los) and spherical-radial (B-r) magnetograms from the Space-weather HMI Active Region Patch (SHARP) products of the Solar Dynamics Observatory, characterizing the presence and features of magnetic polarity inversion lines, fractality, and magnetic connectivity of the AR photospheric field. The data analyzed correspond to approximate to 4,000 AR observations, achieved by randomly selecting 25% of days between September 2012 and May 2016 for analysis at 6-hr cadence. Results from this statistical study include: i) the B-r component results in a slight upwards shift of property values in a manner consistent with a field-strength underestimation by the B-los component; ii) using the B-r component results in significantly lower inter-property correlation in one-third of the cases, implying more independent information as regards the state of the AR photospheric magnetic field; iii) flaring rates for each property vary between the field components in a manner consistent with the differences in property-value ranges resulting from the components; iv) flaring rates generally increase for higher values of properties, except the Fourier spectral power index that has flare rates peaking around a value of 5/3. These findings indicate that there may be advantages in using B-r rather than B-los in calculating flare-related AR magnetic properties, especially for regions located far from central meridian.

  • 出版日期2018-1