摘要

According to Centers for Disease Control and Prevention, each year, an estimated 1.7 million Americans sustain a traumatic brain injury (TBI), which frequently leads to chronic craniofacial pain. In this study we examine a gene therapy approach to the treatment of post-TBI craniofacial neuropathic pain using nasal application of a herpes simplex virus (HSV)-based vector expressing human proenkephalin (SHPE) to target the trigeminal ganglia. Mild TBI was induced in rats by the use of a modified fluid percussion model. Two days after mild TBI, following the development of facial mechanical allodynia, animals received either an intranasal application of vehicle or recombinant HSV encoding human preproenkephalin or lacZ reporter gene encoding control vector (SHZ.1). Compared with baseline response thresholds, mild TBI in SHZ.1 or vehicle-treated animals induced a robust craniofacial allodynia lasting at least 45 days. On the other hand, nasal SHPE application 2 days post-TBI attenuated facial allodynia, reaching significance by day 4-7 and maintaining this effect throughout the duration of the experiment. Immunohistochemical examination revealed strong expression of human proenkephalin in trigeminal ganglia of SHPE, but not SHZ.1-treated rats. This study demonstrates that intranasal administration of HSV-based gene vectors may be a viable, non-invasive means of treating chronic craniofacial pain, including post-TBI pain.

  • 出版日期2017-8