摘要

In this paper we implement the local analytical solution technique to the problem of heat transfer in axisymmetric annulus geometry with internal heating element. This method has shown to be very accurate in estimating the temperature field for axisymmetric problems even for coarse mesh. It is shown that this method reduces to the analytical solution for unidirectional heat transfer in the radial direction in homogeneous media. The technique is based on finding an analytical expression for the temperature field in the radial direction within each grid cell. This means that the temperature field in each cell is allowed to change in a nonlinear fashion along the radial direction. We compare this technique with the traditional finite volume technique and show that; with only few cells in the radial direction, this technique arrives at the mesh-independent solution quite accurately whereas it required denser mesh to arrive closer to this solution using traditional techniques. This method is proposed to the 1D codes that are currently being used to simulate thermalhydraulic characteristics of reactor systems. Furthermore, we also implement the experimental temperature field algorithm in which the governing equations are approximated for each cell as it would without extra manipulation to the governing equations. This technique is very simple and separates the physics from the solving part.

  • 出版日期2014-11