摘要

To simulate semiconductor devices and circuits working at high frequencies or under a large signal input and to better understand their physical effects, a physically based simulation method is proposed in this paper. It utilizes a physical-model-based field simulation to analyze the semiconductor devices in a circuit and incorporates the field simulation into an equivalent-model-based circuit simulation to simulate the circuit. For the field simulation, a genetic-algorithm-based curve-fitting approach is proposed to extract the parameters of the semiconductor devices' physical models. The proposed method is employed for the analysis of a few circuits containing a commercial p-i-n diode with model number mot_bal99lt1. The feasibility and accuracy of the proposed method are validated through a comparison of its simulation results with the measurement data, and good agreement is observed. The other merits of the proposed method are also illustrated, including its ability to provide useful physical mechanisms for the better understanding of the behavior of the p-i-n diode under various working conditions.