摘要

In this paper, the transient settling dynamics of a spherical particle sedimenting in a linearly stratified fluid is investigated by performing fully resolved direct numerical simulations. The settling behaviour is quantified for different values of Reynolds, Froude and Prandtl numbers. It is demonstrated that the transient settling dynamics is correlated to the induced Lagrangian drift of flow around the settling particle. A simplified model is provided to predict the maximum velocity of the settling particle in linearly stratified fluids. The peak velocity can be followed by the oscillation of the settling velocity and the particle can even reverse its direction of motion before reaching to its neutrally buoyant level. The frequency of oscillation of settling velocity scales with the Brunt-Vaisala frequency and the motion of the particle can lead to the formation of secondary and tertiary vortices following the primary vortex.

  • 出版日期2014-7