A metal-induced conformational change and activation of HIV-1 integrase

作者:AsanteAppiah E; Skalka AM
来源:Journal of Biological Chemistry, 1997, 272(26): 16196-16205.
DOI:10.1074/jbc.272.26.16196

摘要

Retroviral integrases are composed of three independently folding domains whose organization relevant to one another is largely unknown. As an approach to understanding its structure, we have investigated the effect of the required metal cofactor(s), Mn2+ or Mg2+, on the conformation of human immunodeficiency virus type 1 (HIV-1) integrase (IN) using monoclonal antibodies (mAbs) that are specific for each of these three domains, Upon the addition of increasing concentrations of the divalent cations to immobilized HIV-1 IN in ELISA assays, binding of mAbs specific for either the C-terminal domain or for an epitope in the catalytic core domain was lost, whereas binding of an N terminus-specific mAb was unaffected. Size exclusion chromatography of a nonaggregating derivative of HIV-1 IN showed that the oligomeric state of the protein did not change under conditions in which recognition of the core and C terminus-specific mAbs was lost. Preincubation with Mn2+ increased the resistance of HIV-1 IN to proteolytic digestion and produced a digestion pattern that was significantly different from that observed with the apoprotein. A derivative that lacked the N-terminal domain, IN(50-288), exhibited the same metal-dependent changes observed with the full-length protein, whereas the isolated catalytic core domain IN(50-212) did not. From this we conclude that the metal-induced conformational change comprises a reorganization of the core and C-terminal domains. Preincubation with Mn2+ increased the specific activity of HIV-1 IN 5-fold. Enzymatic activity was inhibited by the conformation-sensitive C terminus-specific mAb, but this inhibition was reduced greatly if the enzyme was first preincubated with metal ions. Thus, it appears that apo-HIV-1 IN exists predominantly in an inactive conformation that is converted into a catalytically competent form upon the addition of metal ions.

  • 出版日期1997-6-27