摘要

Background: Despite the large amount of experimental data accumulated in the past decade on G-protein-coupled receptor (GPCR) structure and function, understanding of the molecular mechanisms underlying GPCR signaling is still far from being complete, thus impairing the design of effective and selective pharmaceuticals. Objective: Understanding of GPCR function has been challenged even further by more recent experimental evidence that several of these receptors are organized in the cell membrane as homo- or hetero-oligomers, and that they may exhibit unique pharmacological properties. Given the complexity of these new signaling systems, researchers' efforts are turning increasingly to molecular modeling, bioinformatics, and computational simulations for mechanistic insights of GPCR functional plasticity. Methods: We review here the current advancements in the development and application of computational approaches to improve prediction of GPCR structure and dynamics, thus enhancing current understanding of GPCR signaling. Results/conclusions: Models resulting from the use of these computational approaches further supported by experiments are expected to help explain the complex allosterism that propagates through GPCR complexes, ultimately aiming at successful structure-based rational drug design.

  • 出版日期2008-3