Accurate load detection based on a new piezoelectric drive principle employing phase-shift measurement

作者:Wallenhauer Carsten*; Gottlieb Bernhard; Kappel Andreas; Schwebel Tim; Rucha Johannes; Lueth Tim
来源:Journal of Microelectromechanical Systems, 2007, 16(2): 344-350.
DOI:10.1109/JMEMS.2006.889536

摘要

This paper introduces a technique for measuring the torque applied to a piezoelectric motor while it is operating. The technique utilizes phase measurement rather than amplitude measurement and takes advantage of the kinematical principle of a piezoelectric actuator drive (PAD) later described in the paper. Piezoelectric actuators are bidirectional converters of electrical energy into mechanical energy and vice versa. Due to the special kinematical principle of the PAD, an applied external torque and internal torque lead to a phase-shift between the driving signals (a voltage applied to actuators) and the corresponding mechanical feedback (a modulated force). The actuator acts as a sensor to the feedback force converting it into a charge signal. The charge signal is measured and converted into a voltage by a simplified Sawyer-Tower-Circuit. The de bias of both signals the driving actuator voltage, and measured charge signal is removed by a high-pass filter. The signals are then amplified and limited to form digital signals out of the sinusoidal input signals. The phase-shift between both signals is analyzed by a phase detector based on a zero-crossing time difference measurement. By employing the theory of electromechanic conversion of the piezoelectric actuators under the marginal conditions of the drive setup, the torque value is calculated, based on the measured phase-shift. The described technique offers highly accurate real-time torque measurement and additional information that can be used for an on-line diagnosis of the piezoelectric ring motor. The theory was validated in an experiment showing typical errors of 5% and 312 to 1248 measurements per 360 degrees turn of the motor shaft. The piezomotor used during the experiment offered a maximum torque of 5 Nm.