摘要

Present study was performed in order to update the possible mechanism(s), involving in nanosilver particles (NSPs)-induced detrimental impacts in ovarian tissue. For this purpose, 24 mature female rats were divided into control and 0.5, 1, 5 mg/kg NSPs-received groups (intraperitoneally, for 35 days). Follicular growth and atresia, ovarian total antioxidant capacity (TAC), malondialdehyde (MDA), superoxide dismutase (SOD) contents, serum estrogen (E-2) level and macrophages infiltration were investigated. Moreover, ovarian angiogenesis, cellular mRNA damage and cytochrome aromatase CYP19 expression were analyzed. The NSPs enhanced follicular atresia diminished E-2, reduced TAC and SOD level, elevated MDA content and up-regulated macrophages infiltration. Cellular mRNA damage, impaired angiogenesis and diminished CYP19 expression were revealed in NSPs-received groups. Therefore NSPs by down-regulating aromatization, reduce E-2 synthesis which then it leads to impaired angiogenesis. The impaired angiogenesis in turn down-regulates ovarian antioxidant status, which partially enhances follicular atresia by triggering lipid peroxidation and mRNA damage.

  • 出版日期2017-10