摘要

Williams AJ, Fuzessery ZM. Differential roles of GABAergic and glycinergic input on FM selectivity in the inferior colliculus of the pallid bat. J Neurophysiol 106: 2523-2535, 2011. First published July 20, 2011; doi: 10.1152/jn.00569.2011.-Multiple mechanisms have been shown to shape frequency-modulated (FM) selectivity within the central nucleus of the inferior colliculus (IC) in the pallid bat. In this study we focus on the mechanisms associated with sideband inhibition. The relative arrival time of inhibition compared with excitation can be used to predict FM responses as measured with a two-tone inhibition paradigm. An early-arriving low-frequency inhibition (LFI) prevents responses to upward sweeps and thus shapes direction selectivity. A late-arriving high-frequency inhibition (HFI) suppresses slow FM sweeps and thus shapes rate selectivity for downward sweeps. Iontophoretic application of gabazine (GBZ) to block GABA A receptors or strychnine (Strych) to block glycine receptors was used to assess the effects of removal of inhibition on each form of FM selectivity. GBZ and Strych had a similar effect on FM direction selectivity, reducing selectivity in up to 86% of neurons when both drugs were coapplied. FM rate selectivity was more resistant to drug application with less than 38% of neurons affected. In addition, only Strych could eliminate FM rate selectivity, whereas GBZ alone was ineffective. The loss of FM selectivity was directly correlated to a loss of the respective inhibitory sideband that shapes that form of selectivity. The elimination of LFI correlated to a loss of FM direction selectivity, whereas elimination of HFI correlated to a loss of FM rate selectivity. Results indicate that 1) although the majority of FM direction selectivity is created within the IC, the majority of rate selectivity is inherited from lower levels of the auditory system, 2) a loss of LFI corresponds to a loss of FM direction selectivity and is created through either GABAergic or glycinergic input, and 3) a loss of HFI corresponds to a loss of FM rate selectivity and is created mainly through glycinergic input.

  • 出版日期2011-11