Unique Toxicological Behavior from Single-Wall Carbon Nanotubes Separated via Selective Adsorption on Hydrogels

作者:Clar Justin G*; Gustitus Sarah A; Youn Sejin; Batista Carlos A Silvera; Ziegler Kirk J; Bonzongo Jean Claude J
来源:Environmental Science & Technology, 2015, 49(6): 3913-3921.
DOI:10.1021/es505925m

摘要

Over the past decade, extensive research has been completed on the potential threats of single-wall carbon nanotubes (SWCNTs) to living organisms upon release to aquatic systems. However, these studies have focused primarily on the link between adverse biological effects in exposed test organisms on the length, diameter, and metallic impurity content of SWCNTs. In contrast, few studies have focused on the bioeffects of the different SWCNTs in the as-produced mixture, which contain both metallic (m-SWCNT) and semiconducting (s-SWCNT) species. Using selective adsorption onto hydrogels, high purity m-SWCNT and s-SWCNT fractions were produced and their biological impacts determined in dose response studies with Pseudokirchneriella subcapitata as test organism. The results show significant differences in the biological responses of P. subcapitata exposed to high purity m- and s-SWCNT fractions. Contrary to the biological response observed using SWCNTs separated by density gradient ultracentrifugation, it is found that the high-pressure CO conversion (HiPco) s-SWCNT fraction separated by selective adsorption causes increased biological impact. These findings suggest that s-SWCNTs are the primary factor driving the adverse biological responses observed from P. subcapitata cells exposed to our as-produced suspensions. Finally, the toxicity of the s-SWCNT fraction is mitigated by increasing the concentration of biocompatible surfactant in the suspensions, likely altering the nature of surfactant coverage along SWCNT sidewalls, thereby reducing potential physical interaction with algal cells. These findings highlight the need to couple sample processing and toxicity response studies.

  • 出版日期2015-3-17