AC-YVAD-CMK Inhibits Pyroptosis and Improves Functional Outcome after Intracerebral Hemorrhage

作者:Lin, Xiao; Ye, Haotuo; Siaw-Debrah, Felix; Pan, Sishi; He, Zibin; Ni, Haoqi; Xu, Zhu; Jin, Kunlin; Zhuge, Qichuan*; Huang, Lijie*
来源:Biomed Research International, 2018, 2018: 3706047.
DOI:10.1155/2018/3706047

摘要

Intracerebral hemorrhage (ICH) refers to bleeding in the brain and is associated with the release of large amount of inflammasomes, and the activation of different cell death pathways. These cell death pathways lead to removal of inactivated and damaged cells and also result in neuronal cell damage. Pyroptosis is a newly discovered cell death pathway that has gained attention in recent years. This pathway mainly depends on activation of caspase-1- mediated cascades to cause cell death. We tested a well-known selective inhibitor of caspase-1, AC-YVAD-CMK, which has previously been found to have neuroprotective effects in ICH mice model, to ascertain its effects on the activation of inflammasomes mediated pyroptosis. Our results showed that AC-YVAD-CMK could reduce caspase-1 activation and inhibit IL-1 beta production and maturation, but has no effect on NLRP3 expression, an upstream inflammatory complex. AC-YVAD-CMK administration also resulted in reduction in M1-type microglia polarization around the hcmatoma, while increasing the number of M2-type cells. Furthermore, AC-YVAD-CMK treated mice showed some recovery of neurological function after hemorrhage especially at the hyperacute and subacute stage resulting in some degree of limb movement. In conclusion, we are of the view that AC-YVAD-CMK could inhibit pyroptosis, decrease the secretion or activation of inflammatory factors, and affect the polarization of microglia resulting in improvement of neurological function after ICH.