摘要

Purpose: The present report addresses the question of what could be the appropriate dose and dose rate for I-125 and Pd-103 permanent seed implants for breast cancer as monotherapy for early stage breast cancer. This is addressed by employing a radiobiological methodology, which is based on the linear quadratic model, to identify a biologically effective dose (BED) to the prescription point of the brachytherapy implant, which would produce equivalent cell killing (or same cell survival) when compared to a specified external radiotherapy scheme.
Methods: In the present analysis, the tumor and normal tissue BED ratios of brachytherapy and external radiotherapy are examined for different combinations of tumor proliferation constant (K), alpha/beta ratios, initial dose rate (R-0), and reference external radiotherapy scheme (50 or 60 Gy in 2 Gy per fraction). The results of the radiobiological analysis are compared against other reports and clinical protocols in order to examine possible opportunities of improvement.
Results: The analysis indicates that physical doses of approximately 100-110 Gy delivered with an initial dose rate of around 0.05 Gyh(-1) and 78-80 Gy delivered at 0.135 Gyh(-1) for I-125 and Pd-103 permanent implants, respectively, are equivalent to 50 Gy external beam radiotherapy (EBRT) in 2 Gy per fraction. Similarly, for physical doses of approximately 115-127 Gy delivered with an initial dose rate of around 0.059 Gyh(-1) and 92 Gy delivered at 0.157 Gyh(-1) for I-125 and Pd-103, respectively, are equivalent to 60 Gy EBRT in 2 Gy per fraction. It is shown that the initial dose rate required to produce isoeffective tumor response with 50 or 60 Gy EBRT in 2 Gy per fraction increases as the repopulation factor K increases, even though repopulation is also considered in EBRT. Also, the initial dose rate increases as the value of the alpha/beta ratio decreases. The impact of the different alpha/beta ratios on the ratio of the tumor BEDs is significantly large for both the I-125 and Pd-103 implants with the deviation between the alpha/beta = 10.0 Gy ratios and those using the 4.0 and 3.5 Gy values ranging between 18% and 22% in most of the cases.
Conclusions: For the cases of I-125 and Pd-103, the equivalent physical doses to 50 Gy EBRT in 2 Gy per fraction are associated with an overdosage of the involved normal tissue in the range of 4%-16% and an underdosage by 10%-15% for a BED for normal tissue, using an alpha/beta value of 3.0 Gy (BEDNT,3 Gy) of 100 Gy. These values are lower by 10%-20% than the published value of 124 Gy for I-125 and by about 13% when compared to the published isoeffective dose of 90 Gy for Pd-103. Similarly, the equivalent physical doses to 60 Gy EBRT in 2 Gy per fraction are associated with an overdosage of the involved normal tissue by 10%-20% and an underdosage by 4%-10% for BEDNT,3 Gy of 110 Gy.

  • 出版日期2010-6