摘要

Our previous study showed that tetrachlorobenzoquinone (TCBQ) mediated the activation of Nod-like receptor protein 3 (NLRP3) inflammasome, which involves K+ efflux, reactive oxygen species (ROS) production, and mitochondrial DNA damage. In addition, TCBQ down-regulates NLRP3 ubiquitination and promotes the activation of NLRP3 inflammasome. However, the induction of NLRP3 inflammasome by atypical pathways has not yet been characterized. Using human umbilical vein endothelial cells (HUVEC), we discovered that TCBQactivates caspase 1/4/5 and cleaves gasdermin D (GSDMD) into N-terminal and C-terminal cleavage products. In parallel, TCBQ also activates receptor interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like protein (MLKL) signaling pathways. The N-terminal fragments of GSDMD and MLKL translocate from cytoplasm to cell membrane and form oligomers and membrane pores on the cell membrane. The formation of membrane pores not only promotes the extracellular secretion of interleukin 1 beta (IL-1 beta) but also affects cellular ion homeostasis, in particular promotes outflow, which further activates NLRP3 inflammasome and aggravates cellular inflammation. These results indicated that GSDMD and MLKL play important roles in TCBQ-induced endothelial pro-inflammatory responses, which may point to potential therapeutic approaches for TCBQ-mediated toxicity.