摘要

Noninvasive electromagnetic fields (EMFs) have been known to be able to improve bone health; however, their optimal application parameters and action mechanisms remain unclear. This study compared the effects of different forms of EMFs (sinusoidal, triangular, square, and serrated, all set at 50Hz frequency and 1.8mT intensity) on proliferation, differentiation and mineralization of rat calvarial osteoblasts. Square EMFs stimulated osteoblast proliferation but sinusoidal EMFs inhibited it. Sinusoidal and triangular EMFs produced significantly greater alkaline phosphatase (ALP) activity, ALP staining areas, calcium deposition, mineralized nodule areas, and mRNA expression of Runx-2, osteoprotegerin and insulin-like growth factor-I than square and serrated EMFs (P%26lt;0.01). Triangular EMFs had a greater effect than sinusoidal EMFs on every indices except for Runx-2 mRNA expression (P%26lt;0.05). These results indicated that while square EMFs promoted proliferation and had no effect on the differentiation of osteoblasts, sinusoidal EMFs inhibited proliferation but enhanced osteogenic differentiation. Triangular EMFs did not affect cell proliferation but induced the strongest osteogenic activity among the four waveforms of EMFs. Thus, the effects of EMFs on proliferation and differentiation of osteoblasts in vitro were dependent on their waveforms. Bioelectromagnetics. 35:30-38, 2014.

  • 出版日期2014-1
  • 单位中国人民解放军兰州军区兰州总医院