摘要

This paper presents the particle discretization scheme (PDS) to analyze brittle failure of solids. The scheme uses characteristic functions of Voronoi and Delaunay tessellations to discretize a function and its derivatives, respectively. A discretized function has numerous discontinuities so that these discontinuities are utilized as a candidate of crack path segment in modeling propagating cracks, without making any extra computation to accommodate new displacement discontinuities. When the scheme is implemented to a finite element method (FEM), the resulting stiffness matrix coincides with the one that is obtained by using linear elements. The accuracy of computing a stress intensity factor at a crack tip is examined. It is shown that the accuracy is better than that of a FEM with linear elements when the rotational degree of freedom is included in discretizing displacement functions. Three three-dimensional growing crack problems are solved by means of the PDS and the results are presented.

  • 出版日期2009-10-1