摘要

The problem of over fitting in DBN is extensively focused on since different networks may respond differently to an unknown input. In this study, a regularization-reinforced deep belief network (RrDBN) is proposed to improve generalization ability. In RrDBN, a special regularization-reinforced term is developed to make the weights in the unsupervised training process to attain a minimum magnitude. Then, the non-contributing weights are reduced and the resultant network can represent the inter-relations of the input-output characteristics. Therefore, the optimization process is able to obtain the minimum-magnitude weights of RrDBN. Moreover, contrastive divergence is introduced to increase RrDBN's convergence speed. Finally, RrDBN is applied to hand-written numbers classification and water quality prediction. The results of the experiments show that RrDBN can improve the recognition performance with less recognition errors than other existing methods.