摘要

直接甲醇燃料电池(DMFCs)作为一种环境友好、高效的新能源,对解决世界目前面临的"能源危机"与"环境危机"这两大问题有着至关重要的意义,具有较广阔的应用前景.目前,甲醇氧化催化剂仍然以Pt基为主,但是Pt价格昂贵,且容易受甲醇氧化中间产物的毒化,从而影响了DMFCs的商业化进程.碳化钨(WC)作为非贵金属催化剂,在催化方面具有类铂的性能.在WC上负载适量的Pt,可以通过两者的协同效应加强催化剂的抗CO中毒能力.但是,由于WC的导电性能不佳,比表面积较小,因此寻找合适的载体显得尤为必要.在碳载体中,石墨烯(RGO)具有优良的导电性以及独特的片层结构,是电催化剂的理想载体.以RGO为载体,WC为插层物质制备的WC-RGO插层复合物具有化学稳定性好、电导率高且电化学活性面积大等优势.但是,由于石墨烯表面光滑且呈惰性,同时使用传统的碳化方法制备的碳化钨颗粒较大,因此,制备较小颗粒且分散均匀的WC-RGO插层复合物具有较大难度.一般以偏钨酸铵和氧化石墨烯(GO)为前驱体制备WC-RGO插层复合物,但是由于偏钨酸根和GO都带负电,因此不能成功地将偏钨酸根引入到石墨烯的片层结构中,造成WC-RGO插层复合物组装上的困难.本文采用硫脲成功地合成了具有高分散性WC纳米颗粒插层在少层RGO里的WC-RGO插层复合物.硫脲((NH2)2CS)作为阴离子接受器,具有较强的结合阴离子形成稳定复合物的能力,同时它也是合成具有片层结构的过渡金属硫化物的原料之一.因此在WC-RGO插层复合物组装过程中,硫脲既作为锚定及诱导剂,又是制备片层二硫化钨(WS2)的硫源.材料具体制备方法如下:首先利用浸渍法,将偏钨酸根阴离子([H2W12O40]6-)牵引到(NH2)2CS改性过的GO上形成[H2W12O40]6--(NH2)2CS-GO前驱体;然后将前驱体放入管式炉中还原碳化,前驱体先反应生成WS2;由于WS2自身的2D片层结构,反应中可以得到WS2-RGO插层复合物,接着原位碳化生成WC-RGO插层复合物.碳化钨-石墨烯负载铂电催化剂(Pt/WC-RGO)通过微波辅助法制得,并采用X射线衍射、扫描电子显微镜、透射电子显微镜及激光拉曼光谱等手段对其结构与形貌进行了表征.结果显示,在WC-RGO插层复合物中,WC的平均粒径为1.5 nm,RGO的层数约为5层.在甲醇电氧化反应中,相比于商用Pt/C催化剂,Pt/WC-RGO插层复合物催化剂具有更高的电化学活性面积(ECSA)和较高的峰电流密度(246.1 m2/g Pt,1364.7 m A/mg Pt),分别是Pt/C的3.66和4.77倍.我们分别利用CO溶出伏安法、计时电流法及加速耐久性试验法验证了Pt/WC-RGO催化剂优秀的抗CO中毒能力及稳定性.Pt/WC-RGO催化剂特殊的插层结构,在增加WC与Pt接触机会以加强协同作用的同时,促进了催化过程中质量及电荷的转移,因而具有比Pt/C更高的催化活性.可见,通过制备WC-RGO插层复合物可降低Pt用量,从而大大地降低燃料电池中电催化剂的成本.同时,我们使用的是一种高效,可大批量生产纳米材料的方法,有助于催化剂的商业化.

  • 出版日期2016
  • 单位浙江工业大学; 绿色化学合成技术国家重点实验室