Using Compound-Specific Isotope Analysis to Assess Biodegradation of Nitroaromatic Explosives in the Subsurface

作者:Wijker Reto S; Bolotin Jakov; Nishino Shirley F; Spain Jim C; Hofstetter Thomas B*
来源:Environmental Science & Technology, 2013, 47(13): 6872-6883.
DOI:10.1021/es3051845

摘要

Assessing the fate of nitroaromatic explosives in the subsurface is challenging because contaminants are present in different phases (e.g., bound to soil or sediment matrix or as solid-phase residues) and transformation takes place via several potentially competing pathways over time-scales of decades. We developed a procedure for compound-specific analysis of stable C, N, and H isotopes in nitroaromatic compounds (NACs) and characterized biodegradation of 2,4,6-trinitrotoluene (TNT) and two dinitrotoluene isomers (2,4-DNT and 2,6-DNT) in subsurface material of a contaminated site. The type and relative contribution of reductive and oxidative pathways to the degradation of the three contaminants was inferred from the combined evaluation of C, N, and H isotope fractionation. Indicative trends of Delta delta N-15 vs Delta delta C-13 and Delta delta H-2 vs Delta delta C-13 were obtained from laboratory model systems for biodegradation pathways initiated via (i) dioxygenation, (ii) reduction, and (iii) CH3-group oxidation. The combined evaluation of NAC isotope fractionation in subsurface materials and in laboratory experiments suggests that in the field, 86-89% of 2,4-DNT transformation was due to dioxygenation while TNT was mostly reduced and 2,6-DNT reacted via a combination of reduction and CH3-group oxidation. Based on historic information on site operation, our data imply biodegradation of 2,4-DNT with half-lives of up to 9-17 years compared to 18-34 years for cometabolic transformation of TNT and 2,6-DNT.

  • 出版日期2013-7-2