摘要

This brief presents a data-driven constrained norm-optimal iterative learning control framework for linear time-invariant systems that applies to both tracking and point-to-point motion problems. The key contribution of this brief is the estimation of the system's impulse response using input/output measurements from previous iterations, hereby eliminating time-consuming identification experiments. The estimated impulse response is used in a norm-optimal iterative learning controller, where actuator limitations can be formulated as linear inequality constraints. Experimental validation on a linear motor positioning system shows the ability of the proposed data-driven framework to: 1) achieve tracking accuracy up to the repeatability of the test setup; 2) minimize the rms value of the tracking error while respecting the actuator input constraints; 3) learn energy-optimal system inputs for point-to-point motions.

  • 出版日期2013-3