摘要

DNA barcoding, a species identification system based on sequences from a short, standardized DNA region, has emerged recently as a new tool for taxonomists. We investigated the discriminatory power of a subset of highly variable proposed plant barcoding loci (matK, trnH-psbA, ITS2) in Quercus, a taxonomically complex tree genus of global importance. The research included all currently recognized species and some major variants of the Mediterranean region and Europe (32 taxa) and 17 East Asian and North American species used for comparison. Based on sequence character state, we assigned unique plastid haplotypes to 40.8% of the investigated species; ITS2 increased the resolution up to 87.8% of total taxa. Nevertheless, unsuccessful genetic distance-based discrimination questioned the potential efficiency of correct species identification for future studies. Most species appeared to be nonmonophyletic in parallel phylogenetic tests. Three subgeneric groups were outlined, with different rates of within-group variability and geographical differentiation. Members of one of these groups (corresponding to the Eurasian Group Ilex) were paraphyletic to Group Quercus from the New and Old World and the Eurasian Group Cerris. The data gathered indicate that barcoding markers may help to identify closely related species clusters and contribute to the inference of major diversification and evolutionary patterns in oaks, but the methodology per se appears to be of limited efficacy in defining species limits, unless we make a profound revision of traditional Quercus taxonomic categories.

  • 出版日期2013-8