摘要

The Internet of Things (IoT) paradigm stands for virtually interconnected objects that are identifiable and equipped with sensing, computing, and communication capabilities. Services and applications over the IoT architecture can take benefit of the long-term evolution (LTE)/LTE-Advanced (LTE-A), cellular networks to support machine-type communication (MTC). Moreover, it is paramount that MTC do not affect the services provided for traditional human-type communication (HTC). Although previous studies have evaluated the impact of the number of MTC devices on the quality of service (QoS) provided to HTC users, none have considered the joint effect of allocation of control resources and the LTE random-access (RA) procedure. In this paper, a novel scheme for resource allocation on the packet downlink (DL) control channel (PDCCH) is introduced. This scheme allows PDCCH scheduling algorithms to consider the resources consumed by the random-access procedure on both control and data channels when prioritizing control messages. Three PDCCH scheduling algorithms considering RA-related control messages are proposed. Moreover, the impact of MTC devices on QoS provisioning to HTC traffic is evaluated. Results derived via simulation show that the proposed PDCCH scheduling algorithms can improve the QoS provisioning and that MTC can strongly impact on QoS provisioning for real-time traffic.

  • 出版日期2016-6