Multiplex single nucleotide polymorphism (SNP) assay for detection of soybean mosaic virus resistance genes in soybean

作者:Shi, Ainong; Chen, Pengyin*; Vierling, Richard; Zheng, Cuming; Li, Dexiao; Dong, Dekun; Shakiba, Ehsan; Cervantez, Innan
来源:Theoretical and Applied Genetics, 2011, 122(2): 445-457.
DOI:10.1007/s00122-010-1459-6

摘要

Soybean mosaic virus (SMV) is one of the most destructive viral diseases in soybean (Glycine max). Three independent loci for SMV resistance have been identified in soybean germplasm. The use of genetic resistance is the most effective method of controlling this disease. Marker assisted selection (MAS) has become very important and useful in the effort of selecting genes for SMV resistance. Single nucleotide polymorphism (SNP), because of its abundance and high-throughput potential, is a powerful tool in genome mapping, association studies, diversity analysis, and tagging of important genes in plant genomics. In this study, a 10 SNPs plus one insert/deletion (InDel) multiplex assay was developed for SMV resistance: two SNPs were developed from the candidate gene 3gG2 at Rsv1 locus, two SNPs selected from the clone N11PF linked to Rsv1, one 'BARC' SNP screened from soybean chromosome 13 [linkage group (LG) F] near Rsv1, two 'BARC' SNPs from probe A519 linked to Rsv3, one 'BARC' SNP from chromosome 14 (LG B2) near Rsv3, and two 'BARC' SNPs from chromosome 2 (LG D1b) near Rsv4, plus one InDel marker from expressed sequence tag (EST) AW307114 linked to Rsv4. This 11 SNP/InDel multiplex assay showed polymorphism among 47 diverse soybean germplasm, indicating this assay can be used to investigate the mode of inheritance in a SMV resistant soybean line carrying Rsv1, Rsv3, and/or Rsv4 through a segregating population with phenotypic data, and to select a specific gene or pyramid two or three genes for SMV resistance through MAS in soybean breeding program. The presence of two SMV resistance genes (Rsv1 and Rsv3) in J05 soybean was confirmed by the SNP assay.