摘要

Curcumin is a natural compound obtained from turmeric, and is well known for its pharmacological effects. In this work, we design a heterologous pathway for industrial production of curcumin in Escherichia coli. A kinetic model of the pathway is then developed and connected to a kinetic model of the central carbon metabolism of E. coli. This model is used for optimization of the mutant strain through a rational design approach, and two manipulation targets are identified for overexpression. Dynamic simulations are then performed to compare the curcumin production profiles of the different mutant strains. Our results show that it is possible to obtain a significant improvement in the curcumin production rates with the proposed mutants. The kinetic model here developed can be an important framework to optimize curcumin production at an industrial scale and add value to its biomedical potential.

  • 出版日期2014-11