摘要

We investigate the multiple stellar populations in one of the peculiar globular clusters (GCs), M22, using new ground-based wide-field Ca by and Hubble Space Telescope Wide-Field Camera 3 photometry with equivalent passbands, confirming our previous result that M22 has a distinctive red giant branch (RGB) split mainly due to the difference in metal abundances. We also make use of radial velocity measurements by others of the large number of cluster membership stars. Our main results are the following. (1) The RGB and the subgiant branch number ratios show that the calcium-weak (Ca-w) group is the dominant population of the cluster. However, an irreconcilable difference can be seen in the rather simple classification into two horizontal branches by others. (2) Each group has its own CN-CH anticorrelation. However, the alleged CN-CH positive correlation is likely illusory. (3) The location of the RGB bump of the calcium-strong (Ca-s) group is significantly fainter, which may pose a challenge to the helium enhancement scenario in the Ca-s group. (4) The positions of the centers are similar. (5) The Ca-w group is slightly more centrally concentrated, whereas the Ca-s is more elongated at larger radii. (6) The mean radial velocities for both groups are similar, but the Ca-s group has a larger velocity dispersion. (7) The Ca-s group rotates faster. The plausible scenario for the formation of M22 is that it formed via a merger of two GCs in a dwarf galaxy environment and accreted later to our Galaxy.

  • 出版日期2015-7