An integrated planar magnetic micropump

作者:Ni Junhui; Wang Bin; Chang Stanley; Lin Qiao*
来源:Microelectronic Engineering, 2014, 117: 35-40.
DOI:10.1016/j.mee.2013.11.014

摘要

This paper presents an integrated magnetic micropump that uses in-plane compliance-based check valves and a magnetically actuated membrane. The device, which allows for simple fabrication and system integration with other functional elements, consists of two functional layers both fabricated from poly(dimethylsiloxane) (PDMS). The upper PDMS layer provides a compliant membrane with an electroplated thin-film permalloy strip for actuation, while the lower PDMS layer incorporates microfluidic components including the microchannels, pump chamber, and a pair of check valves for flow regulation. The PDMS check valves, each having a compliant flap in contact with a stiff stopper to allow for unidirectional fluid flow with minimized leakage, are located at the inlet and outlet of the pump chamber, respectively. As such, the unidirectional flow at a controlled volumetric rate can be readily generated in accordance with the pumping actions. Systematic characterization of the micropump has been performed by studying the dependence of its pumping flow rate on the driving frequency of magnetic actuation, and the back pressure. Experimental results show that this micropump is capable of generating fluid flow of 0.15 mu L/min at the frequency of 2 Hz, corresponding to a volume resolution of 1 nL per stroke, and working reliably against a maximum back-pressure of 550 Pa, demonstrating the potential application of this micropump for various integrated lab-on-a-chip systems.