摘要

Adsorption of hexavalent chromium (Cr(VI)) using pomelo peel activated biochar (PPAB) as a adsorbent was investigated. The characterization of the adsorbent was studied by Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and zeta potentials analysis. The results showed that the PPAB had a high microporous structure and the existence of organic compounds such as hemicellulose, cellulose, and lignin. Various parameters including initial Cr(VI) concentration, pH, and adsorbent dosage were studied. The results indicated that the adsorption process was pH dependent and maximum adsorption capacity of Cr(VI) was 57.637 mg/g at pH 2.0 and 35 degrees C with PPAB dosage of 0.05 g. The adsorption kinetics fitted well to the pseudo-second-order model and the correlation coefficients were greater than 0.999. The adsorption isotherm data could be better described with the Langmuir model, suggesting the homogeneous and monolayer adsorption. Moreover, the scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and Fourier transform infrared spectrum (FTIR) results showed that the surface of PPAB had plenty of developed pores after activation and the modification process was deemed to proceed between the O-H groups from pomelo peel and H3PO4 molecules. The main adsorption mechanism was attributed electrostatic interaction and ion exchange between the surface of PPAB and Cr(VI).