摘要

Mitotic spindle orientation can influence tissue organization and vice versa. Cells orient their spindles by rotating them parallel or perpendicular to the cell - and hence the tissue - axis. Spindle orientation in turn controls the placement of daughter cells within a tissue, influencing tissue morphology. Recent findings implicating tumor suppressor proteins in spindle orientation bring to the forefront a connection between spindle misorientation and cancer. In this Commentary, we focus on the role of three major human tumor suppressors - adenomatous polyposis coli (APC), E-cadherin and von Hippel-Lindau (VHL) - in spindle orientation. We discuss how, in addition to their better-known functions, these proteins affect microtubule stability and cell polarity, and how their loss of function causes spindles to become misoriented. We also consider how other cancer-associated features, such as oncogene mutations, centrosome amplification and the tumor microenvironment, might influence spindle orientation. Finally, we speculate on the role of spindle misorientation in cancer development and progression. We conclude that spindle misorientation alone is unlikely to be tumorigenic, but it has the potential to synergize with cancer-associated changes to facilitate genomic instability, tissue disorganization, metastasis and expansion of cancer stem cell compartments.

  • 出版日期2011-4-1