摘要

The giant magnetoimpedance effect (GMI) is used in the most recent technologies developed for the detection of magnetic fields, showing potential to be applied in the measurement of ultra-weak fields. GMI samples exhibit a huge dependency of their electrical impedance on the magnetic field, which makes them excellent magnetic sensors. In spite of GMI magnetometers being mostly based on magnitude impedance characteristics, it was previously verified that sensitivity could be significantly increased by reading the impedance phase. Pursuing this idea, a phase-based GMI magnetometer has been already developed as well as an electronic configuration capable of improving the phase sensitivity of GMI samples. However, when using this topology, it was noted that the sensitivity improvement comes at the cost of reduced voltage levels in the reading terminal, degrading the signal-to-noise ratio. Another drawback of the electronic configuration was that it was not capable of enforcing a linear behavior of the impedance phase in the function of the magnetic field in a given operation region. Aiming at overcoming those issues and then optimizing the behavior of the circuit developed to improve the phase sensitivity, this paper mathematically describes a completely new methodology, presents an enhanced newly developed electronic topology and exemplifies its application.

  • 出版日期2014-11