Nonlinear Control Algorithm for Improving Settling Time in Systems With Friction

作者:Bucci Brian A*; Cole Daniel G; Ludwick Stephen J; Vipperman Jeffrey S
来源:IEEE Transactions on Control Systems Technology, 2013, 21(4): 1365-1373.
DOI:10.1109/TCST.2012.2206812

摘要

A nonlinear control algorithm that greatly reduces settling time in precision instruments with rolling element bearings is proposed. Reductions of 80.5%-87.4% in settling time were achieved when settling to within 3-100 nm of the commanded position. Final settling of such systems is typically impacted by the nonlinearity in the pre-rolling friction regime, which manifests as a hysteretic stiffness. Consequently, the integral term in the controller can take a long time to respond. In this paper, a nonlinear integral action settling algorithm is presented. The nonlinear integral gain takes the form of a Dahl friction model. Since the integral gain mimics hysteretic stiffness, the output of the integral control term is instantaneously set to a large value after each direction change, greatly improving settling response. A nearly first-order error dynamic results, which has a user-definable time constant. Before the algorithm can be implemented, the Coulomb friction and initial contact stiffness in the Dahl model must be experimentally determined for the stage. A sensitivity study is performed on the initial contact stiffness, which was found in other works to dictate the stability of the algorithm.

  • 出版日期2013-7