摘要

In this series of papers, AC induced corrosion of steel pipe under cathodic protection was investigated. In this Part III, the most realistic model was devised, i.e., the cathodic current was composed of the reductions of dissolved oxygen partly controlled by diffusion and of the water following the Tafel law. The cathodic protection potential necessary to mitigate the corrosion for various AC amplitudes were evaluated. In this modeling approach, no change of soil properties due to AC corrosion is considered. Mean DC values of corrosion potential shift and the corrosion current density in presence of AC signal were calculated in reduced scale making possible field applications by introducing an appropriate set of corrosion kinetics parameter collected without AC signal. In a highly corrosive soil, the reduction of dissolved oxygen is slow compared with that of the water reduction, and then the corrosion behavior becomes similar to the case examined in Part II.

  • 出版日期2017