摘要

This paper aims at providing a flexible and compact volumetric object model capable of representing many sedimentary structures at different scales. Geobodies are defined by a boundary representation; each bounding surface is constructed as a parametric deformable surface. A three-dimensional sedimentary object with a compact parametrization which allows for representing various geometries and provides a curvilinear framework for modeling internal heterogeneities is proposed. This representation is based on non-uniform rational basis splineswhich smoothly interpolate between a set of points. The three-dimensional models of geobodies are generated using a small number of parameters, and hence can be easily modified. This can be done by a point and click user interaction for manual editing or by a Monte-Carlo sampling for stochastic simulation. Each elementary shape is controlled by deformation rules and has connection constraints with associated objects to maintain geometric consistency through editing. The boundary representations of the different sedimentary structures are used to construct hexahedral conformal grids to perform petrophysical property simulations following the particular three-dimensional parametric space of each object. Finally these properties can be upscaled, according to erosion rules, to a global grid that represents the global depositional environment.

  • 出版日期2016-4