摘要

This article provides the graphical properties which can ensure unique localizability in cooperative networks with hybrid distance and bearing (angle of arrival) measurements. Furthermore, within the networks satisfying these graphical properties, this article identifies further sets of conditions so that the associated computational complexity becomes linear in the number of sensor nodes. We show how, by forming a spanning tree used once for distances and a second time for bearings where the underlying graph is connected, the localization problem can be made solvable in linear time with significantly less number of sensing links and smaller sensing radii of nodes compared with the cooperative networks with distance-only or bearing-only measurements. These easily localizable networks can be localized in polynomial time when measurements are noisy.

  • 出版日期2011