摘要

I present a deterministic model of the dynamics of signal transduction and gene expression in the Gac/Rsm network of the soil-dwelling bacterium Pseudomonas fluorescens. The network is involved in quorum sensing and governs antifungal production in this important biocontrol agent. A central role is played by small untranslated RNAs, which sequester regulatory mRNA-binding proteins. The model provides a reasonable match to the available data, which consists primarily of time series from reporter gene fusions. I use the model to investigate the information-processing properties of the Gac/Rsm network, in part by comparing it to a simplified model capable of quorum sensing. The results suggest that the complexity and redundancy of the Gac/Rsm network have evolved to meet the conflicting requirements of high sensitivity to environmental conditions and a conservative, robust response to variability in parameter values. Similar systems exist in a wide variety of bacteria, where they control a diverse set of population-dependent behaviors. This makes them important subjects for mathematical models that can help link empirical understanding of network structure to theoretical insights into how these networks have evolved to function under natural conditions.

  • 出版日期2010-9