摘要

A family of multi-responsive nanogels with different compositions and crosslinking degrees have been prepared by the miniemulsion copolymerization of monomethyl oligo(ethylene glycol) acrylate (OEGA) and an ortho ester-containing acrylic monomer, 2-(5,5-dimethyl-1,3-dioxan-2-yloxy) ethyl acrylate (DMDEA), with bis(2-acryloyloxyethyl) disulfide (BADS) as a crosslinker. These nanogels are thermoresponsive and labile in the weakly acidic or reductive environments. The thermoresponsive behaviors, acid-triggered hydrolysis, and reduction-induced degradation of these nanogels were studied by means of dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The results indicate that the volume phase transition temperature (VPTT), thermally induced deswelling ratio, and acid-triggered swelling ratio of the nanogels are closely relevant to their compositions and crosslinking degrees. Although these nanogels could be reductively disrupted by dithiothreitol (DTT), single polymer chains with sizes smaller than 20 nm were not detected by DLS. This is probably due to the existence of some unbreakable linkages formed by chain transfer to the disulfide bond during the radical polymerization. These nanogels are capable of encapsulating hydrophobic compounds. The loading capability of the nanogels for Nile Red (NR), paclitaxel (PTX). and doxorubicin (DOX), and the release behaviors of the drug-loaded nanogels were investigated by UV-vis spectrometry and HPLC. As expected, drug release can be greatly accelerated by a cooperative effect of both acid-triggered hydrolysis and DTT-induced degradation. Finally, the PTX-loaded nanogels exhibit a concentration-dependent toxicity to MCF-7 cells while the intact unloaded nanogels are non-toxic, thereby they may be used as potential carriers for hydrophobic anticancer drugs.