摘要

A sandwich-type electrochemical cytosensor is described for quantitative determination of CD44-overexpressing HeLa cells. Hyaluronic acid (HA) acts as a targeting molecule that was in-situ incorporated into the sensor based on the use of an indium tin oxide (ITO) electrode modified with multi-walled carbon nanotubes (MWCNTs). The 3D-MWCNT structure is shown to strongly improve the electronic properties and surface chemical reactivities. The HA-modified sensor exhibits a highly sensitive response to HeLa cells. A sandwiched hybridization protocol was then established using BIO [an N-butyl-4-(6'-aminohexyl)amino-1,8-naphthalimide probe modified with HA] as the tracing labels of the fluorescent probes for targeting CD44-positive tumor cells. The signal amplification was thereby maximized and measured by chronocoulometry. The binding of CD44-positive HeLa cells to the HA modified sensing layer causes a decrease in chronocoulometric response. The signal decreases linearly in the 2.1 x 10(2) to 2.1 x 10(7) HeLa cells.mL(-1) concentration range with a detection limit of 70 cells.mL(-1). Such a sandwich-type assay may be tailored as a sensitive candidate for detecting low levels of tumor cells.