摘要

The 3,6-dideoxyhexoses can be found in the cell wall lipopolysaccharide of Gram-negative bacteria, where they have been shown to be the dominant antigenic determinants. All naturally occurring 3,6-dideoxyhexoses, with colitose as the only exception, are biosynthesized via a complex pathway that begins with CDP-D-glucose. Included in this pathway is CDP-paratose synthase, an essential enzyme in the formation of the 3,6-dideoxy sugars, CDP-paratose and CDP-tyvelose. Recently, the gene encoding CDP-paratose synthase in Salmonella typhi, rfbS, has been identified and sequenced [Verma, N., and Reeves, P. (1989) J. Bacteriol. 171, 5694-5701]. On the basis of this information, we have amplified the rfbS gene by polymerase chain reaction (PCR) from S. typhi and cloned this gene into a pET-24(+) vector. Expression and purification of CDP-paratose synthase have allowed us to fully characterize the catalytic properties of this enzyme, which is a homodimeric protein with a preference for NADPH over NADH. It catalyzes the stereospecific hydride transfer of the pro-S hydrogen from the C-4' position of the reduced coenzyme to C-4 of the substrate, CDP-3,6-dideoxy-D-glycero-D-glycero-4-hexulose. The overall equilibrium of this catalysis greatly favors the formation of the reduced sugar product and the oxidized coenzyme. Interestingly, this enzyme also exhibits a high affinity for NADPH with a much smaller dissociation constant (K-ia) of 0.005 +/- 0.002 mu M compared to the K-m of 26 +/- 8 mu M for NADPH. While this unusual property complicated the interpretation of the kinetic data, the kinetic mechanism of CDP-paratose synthase as explored by the combination of bisubstrate kinetic analysis, product inhibition studies, and dead-end competitive inhibition studies is most consistent with a Theorell-Chance mechanism. The present study on CDP-paratose synthase, a likely new member of the short-chain dehydrogenase family, represents the first detailed characterization of this type of ketohexose reductase, many of which may share similar properties with CDP-paratose synthase.

  • 出版日期1998-4-7

全文