摘要

We numerically investigated liquid droplet impact behavior onto a dry and flat surface. The numerical method consists of a coupled level set and volume-of-fluid framework, volume/surface integrated average based multimoment method, and a continuum surface force model. The numerical simulation reproduces the experimentally observed droplet behavior quantitatively, in both the spreading and receding phases, only when we use a dynamic contact angle model based on experimental observations. If we use a sensible simplified dynamic contact angle model, the predicted time dependence of droplet behavior is poorly reproduced. The result shows that precise dynamic contact angle modeling plays an important role in the modeling of droplet impact behavior.

  • 出版日期2009-7