摘要

Bees move and forage within three dimensions and rely heavily on vision for navigation. The use of vision-based odometry has been studied extensively in horizontal distance measurement, but not vertical distance measurement. The honey bee Apis mellifera and the stingless bee Melipona seminigra measure distance visually using optic flow-movement of images as they pass across the retina. The honey bees gauge height using image motion in the ventral visual field. The stingless bees forage at different tropical forest canopy levels, ranging up to 40 m at our site. Thus, estimating height would be advantageous. We provide the first evidence that the stingless bee Melipona panamica utilizes optic flow information to gauge not only distance traveled but also height above ground, by processing information primarily from the lateral visual field. After training bees to forage at a set height in a vertical tunnel lined with black and white stripes, we observed foragers that explored a new tunnel with no feeder. In a new tunnel, bees searched at the same height they were trained to. In a narrower tunnel, bees experienced more image motion and significantly lowered their search height. In a wider tunnel, bees experienced less image motion and searched at significantly greater heights. In a tunnel without optic cues, bees were disoriented and searched at random heights. A horizontal tunnel testing these variables similarly affected foraging, but bees exhibited less precision (greater variance in search positions). Accurately gauging flight height above ground may be crucial for this species and others that compete for resources located at heights ranging from ground level to the high tropical forest canopies.

  • 出版日期2012-9