摘要

The objective of this study is to improve the viability and osteogenic differentiation of cultured rat bone marrow-derived mesenchymal stem cells (MSC) by the use of gelatin hydrogel microspheres. Gelatin was dehydrothermally crosslinked at 140 degrees C for 48 h in a water in oil emulsion state. When cultured with the gelatin hydrogel microspheres in round, U-bottomed wells of 96-well plates coated with poly(vinyl alcohol) MSC formed aggregates homogeneously incorporating the microspheres. The viability of the cell aggregates was significantly higher compared with that of aggregates formed without microspheres. MSC proliferation in the aggregates depended on the number and diameter of the incorporated microspheres. Higher MSC proliferation was observed for aggregates incorporating a greater number of larger gelatin microspheres. When evaluated as a measure of aerobic glycolysis the ratio of L-lactic acid production/glucose consumption in MSC was significantly lower for MSC cultured with gelatin microspheres than those without microspheres. MSC production of alkaline phosphatase (ALP) and sulfated glycosaminaglycan (sGAG) was examined to evaluate their potential osteogenic and chondrogenic differentiation. The amount of ALP produced was significantly higher for MSC aggregates cultured with gelatin microspheres than that of MSC cultured without microspheres. On the other hand, the amount of sGAG produced was significantly lower for MSC aggregates containing microspheres. It is concluded that the incorporation of gelatin hydrogel microspheres prevents the aggregated MSC suffering from a lack of oxygen, resulting in enhanced MSC aggregation and cell proliferation and osteogenic differentiation.

  • 出版日期2011-7