摘要
针对目标跟踪观测过程中野值和机动互存的辨识问题,根据标准Kalman滤波算法不具有容错性的特征,提出利用Kalman滤波收敛时间辨识野值抑或机动导致观测值异常的方法,以减少测量值准确有用信息的丢失。然后,采用改进3σ准则对近似服从正态分布的小测量域内观测数据进行粗略预处理,并对异常值建立了残差扰动因子的双滤波器辨识,同时以设置同步并行动态的时间计时为判决条件,有效减小了后续目标跟踪的误差。仿真实例表明:所提出的双假设辨识算法能够实现实时辨识,且有效跟踪目标。
- 单位
针对目标跟踪观测过程中野值和机动互存的辨识问题,根据标准Kalman滤波算法不具有容错性的特征,提出利用Kalman滤波收敛时间辨识野值抑或机动导致观测值异常的方法,以减少测量值准确有用信息的丢失。然后,采用改进3σ准则对近似服从正态分布的小测量域内观测数据进行粗略预处理,并对异常值建立了残差扰动因子的双滤波器辨识,同时以设置同步并行动态的时间计时为判决条件,有效减小了后续目标跟踪的误差。仿真实例表明:所提出的双假设辨识算法能够实现实时辨识,且有效跟踪目标。