摘要

The increasing penetration of wind power in the grid has driven the integration of wind farms with power systems that are series-compensated to enhance power transfer capability and dynamic stability. This may lead to sub-synchronous control interaction (SSCI) problems in series-compensated doubly-fed induction generator (DFIG)-based wind farms. To mitigate SSCI, nonlinear controllers based on exact feedback linearization (EFL) are proposed in this paper. Before deriving the control laws, the exact feedback linearizability of the studied system is scrutinized. Frequency scanning analysis is employed to test the designed EFL controllers. Moreover, the performance of the EFL controllers is compared to that of classical proportional-integral (PI) controllers. A series-compensated 100 MW DFIG-based wind park is utilized to assess the performance of the designed controllers through the alleviation of sub-synchronous resonance. Analyses of the studied system reveal that the resistance is negative under sub-synchronous frequency conditions, whereas the reactance becomes negative at approximately 44 Hz. The designed EFL controllers effectively alleviate SSCI and result in positive reactance and resistance values within the whole sub-synchronous frequency range. The results from the frequency scanning method are also validated through the time domain simulation and the eigenvalue analysis.