摘要

The anisotropy effect is exhibited more prominently in sedimentary depositions, and it relates the soil's mechanical specifications to the directions of imposed loads. Even though this phenomenon has been comprehensively explored in silica sands, few research has been conducted for studying the anisotropic behavior of marine carbonate sands. To bridge this gap, the present study investigates the anisotropy effect on the mechanical behavior of Bushehr carbonate sand acquired from the north shelf of the Persian Gulf in Iran. Toward this end, some undrained principal stress rotation tests are conducted using a hollow cylinder shear torsional apparatus in such a manner that the direction of the applied principal stresses are fixed along a desired orientation and the total mean stress and intermediate principal stress ratio are kept constant. Furthermore, prior to shearing, the samples are consolidated under three confining pressures and two isotropic and anisotropic states. The results show that dilative behavior is observed in all loading directions after initial contraction; this contradicts the response observed in silica sands. The anisotropy response of soil follows two different trends in the contractive and dilative phases. The relation of soil's mechanical properties shows a descending trend with the angle of maximum principal stress in the contractive phase; on the other hand, the anisotropy behavior shows a dominant parabola trend in the dilative phase, where the maximum ultimate pore pressure and minimum soil strength occur in the stress direction with an angle of alpha = 30A degrees. By increasing the confining pressure in the soil element, the intensity of the anisotropy in some mechanical properties except the soil deformation is reduced. Furthermore, the deviatoric-to-effective mean stress ratio in the phase transformation state from contraction to dilation is independent of the loading direction and consolidation stress state, and it is considered one of the intrinsic properties of sand.

  • 出版日期2015-10