摘要

The multi-model inverse method for nonlinear inverse problems is established based on the multi-model control theory. First the model switching variable is chosen and several typical operating balance points in the workspace of the balance variable are selected. Then for each operating balance point the linear local model is established, and the local controller is designed for each linear local model. Finally, according to the instantaneous matching degree between the actual model and the local models, the inversion results of each local controller are weighted and synthesized to obtain the final inversion result. Numerical tests are implemented to solve the one-dimensional nonlinear inverse heat conduction problem by the multi-model inverse method associated with the dynamic matrix control (DMC) and DMC filter, respectively. Numerical results by the multi-model inverse method based on DMC demonstrate that the multi-model inverse method is a highly computationally efficient and accurate algorithm for inverse problems with complicated direct problems. Numerical results by the multi-model inverse method based on DMC filter show that the presented method can extend the applied field of the complicated linear inverse algorithms such as digital filter to the nonlinear inverse problems and it can obtain satisfactory inversion results.