摘要

A smart hybrid microenvironment-mediated dual pH/redox-responsive polymeric nanoparticles combined with inorganic calcium phosphate (CaP) was fabricated, which we term as armored nano-chrysalis inspired by butterfly pupa. The nano-chrysalis has an inner core composed of specially designed oligosaccharides of hyaluronan (oHA) targeting CD44 receptor. The inner core has two functions, i.e., the dual pH/redox responsive polymeric conjugate and the fluorescent curcumin-prodrug function. The prepared nano-chrysalis possessed a smaller size (102.5 +/- 4.6 nm) than the unarmored nano-chrysalis (122.5 +/- 6.6 nm). Interestingly, while the nano-chrysalis were stable under pH 7.4, when incubated under the tumor acidic conditions (pH 6.5) the outer CaP armor would dissolve in a pH-dependent, sustained manner. Moreover, nano-chrysalis was demonstrated to present the most effective antitumor efficacy than other formulations. This study provides a promising smart nano-carrier platform to enhance the stability, decrease the side effects, and improve the therapeutic efficacy of anticancer drugs.