Use of bio-mimetic three-dimensional technology in therapeutics for heart disease

作者:Serpooshan Vahid; Zhao Mingming; Metzler Scott A; Wei Ke; Shah Parisha B; Wang Andrew; Mahmoudi Morteza; Malkovskiy Andrey V; Rajadas Jayakumar; Butte Manish J; Bernstein Daniel; Ruiz Lozano Pilar*
来源:Bioengineered, 2014, 5(3): 193-197.
DOI:10.4161/bioe.27751

摘要

Due to the limited self-renewal capacity of cardiomyocytes, the mammalian heart exhibits impaired regeneration and insufficient ability to restore heart function after injury. Cardiovascular tissue engineering is currently considered as a promising alternative therapy to restore the structure and function of the failing heart. Recent evidence suggests that the epicardium may play critical roles in regulation of myocardial development and regeneration. One of the mechanisms that has been proposed for the restorative effect of the epicardium is the specific physiomechanical cues that this layer provides to the cardiac cells. In this article we explore whether a new generation of epicardium-mimicking, acellular matrices can be utilized to enhance cardiac healing after injury. The matrix consists of a dense collagen scaffold with optimized biomechanical properties approaching those of embryonic epicardium. Grafting the epicardial patch onto the ischemic myocardium-promptly after the incidence of infarct-resulted in preserved contractility, attenuated ventricular remodeling, diminished fibrosis, and vascularization within the injured tissue in the adult murine heart.

  • 出版日期2014-6