摘要

Adequate damping capacity of concrete material is critical for concrete structures to resist impact loads. The effectiveness of styrene-butadiene latex as a polymer admixture for improving the vibration reduction capacity of concrete matrix is evaluated in this study by using a micromechanical-based numerical approach aided with laboratory experimental work for determining material parameters and validating a developed numerical model. By using the discrete element method (DEM), a user-defined three-dimensional (3D) model was developed to study the dynamic flexural responses of styrene-butadiene latex admixed concrete in the loss tangent, storage modulus, and loss modulus at three loading frequencies: 0.2, 1, and 5 Hz and a typical ambient temperature: 25 degrees C. The 20% usage of styrene-butadiene latex, by weight of cement, was found to favorably enhance the storage and loss moduli and the loss tangent of concrete. Results from this combined numerical and experimental study can be expected to benefit the design of more resilient concrete materials and structures. DOI: 10.1061/(ASCE)MT.1943-5533.0000499.

  • 出版日期2012-9